ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Insoo Jun, Mohamed A. Abdou, Anil Kumar
Fusion Science and Technology | Volume 25 | Number 1 | January 1994 | Pages 51-83
Technical Paper | Blanket Engineering | doi.org/10.13182/FST94-A30236
Articles are hosted by Taylor and Francis Online.
Measured decay rates resulting from neutron irradiation of zirconium and tungsten samples in a typical fusion environment have been compared with the computed values, and the sources of errors in the data and the calculational method have been identified. Comparison of four codes showed large differences that arise mainly from differences in the data libraries provided with these codes. The following reactions were found to be most important in terms of their contribution to the decay photon emission rate: 90Zr(n, 2n)-89m+gZr) 90Zr(n,p)90mY, 90Zr(n,α)87mSr, 91Zr(n,p)91mY, 186W(n,y)187W, 186W(n,p)186Ta, 186W(n,np)(n,d)-185Ta, 184W(n,p)184Ta, 183W(n,p)183Ta, 182W(n,p)-182Ta, and 186W(n, α)183Hf. However, decay data and cross sections for these reactions are not adequate in currently available libraries. An effort was made to improve the decay data by using the values from the most recent Table of Radioactive Isotopes and to improve the cross sections by using a simple curve-fitting procedure. Modified or improved decay data and cross sections were implemented in a representative code, and the computation was performed again. A great improvement in the computed results was observed for both sample cases. This work can easily be extended to other fusion-relevant materials by utilizing the methodology presented here. The improved decay and cross-section data were applied to an International Thermonuclear Experimental Reactor (ITER) blanket using tungsten as a first-wall coating material and Li2ZrO3 as a breeding material. The specific photon yield in each zone was computed, and as much as three orders of magnitude difference in the photon yield in the tungsten zone and ∼10 to 15% difference in the zirconium-containing breeding zone were observed between the results using the improved decay and cross-section data and those using the original data.