ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Dragonfly, a Pu-fueled drone heading to Titan, gets key NASA approval
Curiosity landed on Mars sporting a radioisotope thermoelectric generator (RTG) in 2012, and a second NASA rover, Perseverance, landed in 2021. Both are still rolling across the red planet in the name of science. Another exploratory craft with a similar plutonium-238–fueled RTG but a very different mission—to fly between multiple test sites on Titan, Saturn’s largest moon—recently got one step closer to deployment.
On April 25, NASA and the Johns Hopkins University Applied Physics Laboratory (APL) announced that the Dragonfly mission to Saturn’s icy moon passed its critical design review. “Passing this mission milestone means that Dragonfly’s mission design, fabrication, integration, and test plans are all approved, and the mission can now turn its attention to the construction of the spacecraft itself,” according to NASA.
Insoo Jun, Mohamed A. Abdou, Anil Kumar
Fusion Science and Technology | Volume 25 | Number 1 | January 1994 | Pages 51-83
Technical Paper | Blanket Engineering | doi.org/10.13182/FST94-A30236
Articles are hosted by Taylor and Francis Online.
Measured decay rates resulting from neutron irradiation of zirconium and tungsten samples in a typical fusion environment have been compared with the computed values, and the sources of errors in the data and the calculational method have been identified. Comparison of four codes showed large differences that arise mainly from differences in the data libraries provided with these codes. The following reactions were found to be most important in terms of their contribution to the decay photon emission rate: 90Zr(n, 2n)-89m+gZr) 90Zr(n,p)90mY, 90Zr(n,α)87mSr, 91Zr(n,p)91mY, 186W(n,y)187W, 186W(n,p)186Ta, 186W(n,np)(n,d)-185Ta, 184W(n,p)184Ta, 183W(n,p)183Ta, 182W(n,p)-182Ta, and 186W(n, α)183Hf. However, decay data and cross sections for these reactions are not adequate in currently available libraries. An effort was made to improve the decay data by using the values from the most recent Table of Radioactive Isotopes and to improve the cross sections by using a simple curve-fitting procedure. Modified or improved decay data and cross sections were implemented in a representative code, and the computation was performed again. A great improvement in the computed results was observed for both sample cases. This work can easily be extended to other fusion-relevant materials by utilizing the methodology presented here. The improved decay and cross-section data were applied to an International Thermonuclear Experimental Reactor (ITER) blanket using tungsten as a first-wall coating material and Li2ZrO3 as a breeding material. The specific photon yield in each zone was computed, and as much as three orders of magnitude difference in the photon yield in the tungsten zone and ∼10 to 15% difference in the zirconium-containing breeding zone were observed between the results using the improved decay and cross-section data and those using the original data.