ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
November 2025
Fusion Science and Technology
Latest News
Nuclear News 40 Under 40: The wait is over
Following the enthusiastic response from the nuclear community in 2024 for the inaugural NN 40 Under 40, the Nuclear News team knew we had to take up the difficult task in 2025 of turning it into an annual event—though there was plenty of uncertainty as to how the community would receive a second iteration this year. That uncertainty was unfounded, clearly, as the tight-knit nuclear community embraced the chance to celebrate its up-and-coming generation of scientists, engineers, and policy makers who are working to grow the influence of this oft-misunderstood technology.
Sergei Zimin
Fusion Science and Technology | Volume 24 | Number 2 | September 1993 | Pages 168-179
Technical Paper | Shielding | doi.org/10.13182/FST93-A30223
Articles are hosted by Taylor and Francis Online.
An extensive analysis of the sensitivity of the fast neutron flux in the superconductor, the dose to the electrical insulator, and the number of displacements per atom in the copper stabilizer to variations of the neutron cross sections for the International Thermonuclear Experimental Reactor (ITER)/OTR inboard region (first wall/blanket/shield/vacuum vessel) was carried out. All of the nuclides with a significant concentration in the ITER/OTR inboard region were investigated, namely, iron, chromium, nickel, lead, oxygen, hydrogen, boron, copper, 6Li, and 7Li. The integrated total sensitivities of iron, lead, hydrogen, and oxygen were compared with the results for the OTR and Next European Torus (NET) sensitivity analyses. The integrated total sensitivity of both the fast neutron flux and the dose to variation of lead cross sections for the ITER/OTR was much higher than that for the OTR, namely, 3.5 and 1.2, respectively. The difference in the integrated total sensitivities of the inboard toroidal field coil responses to a one standard deviation variation of the iron, hydrogen, and oxygen neutron cross sections was <30%. The most important energy regions and the types of neutron cross sections for shield calculations were identified. The uncertainty of the neutron cross sections in the important energy regions needs to be decreased to <10% to decrease the uncertainty of the calculated neutron dose and fast flux behind the ITER/OTR inboard shield to <15 to 30%.