ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Dragonfly, a Pu-fueled drone heading to Titan, gets key NASA approval
Curiosity landed on Mars sporting a radioisotope thermoelectric generator (RTG) in 2012, and a second NASA rover, Perseverance, landed in 2021. Both are still rolling across the red planet in the name of science. Another exploratory craft with a similar plutonium-238–fueled RTG but a very different mission—to fly between multiple test sites on Titan, Saturn’s largest moon—recently got one step closer to deployment.
On April 25, NASA and the Johns Hopkins University Applied Physics Laboratory (APL) announced that the Dragonfly mission to Saturn’s icy moon passed its critical design review. “Passing this mission milestone means that Dragonfly’s mission design, fabrication, integration, and test plans are all approved, and the mission can now turn its attention to the construction of the spacecraft itself,” according to NASA.
Roger Raman, John C. Thomas, David Q. Hwang, Garrard D. Conway, Francois Martin, Akira Hirose, Paul Gierszewski, Réal Décoste
Fusion Science and Technology | Volume 24 | Number 3 | November 1993 | Pages 239-250
Technical Paper | Fusion Fuel Cycle | doi.org/10.13182/FST93-A30198
Articles are hosted by Taylor and Francis Online.
Reactor particle fueling is one of the issues that remain to be resolved in the development of a tokamak fusion reactor. One of the most promising concepts of reactor fueling is the injection of high-speed compact toroids (CTs). Compact toroid formation and acceleration at the Ring Accelerator Experiment (RACE) device at Lawrence Livermore National Laboratory has shown that CT plasmoid velocities sufficient for center fueling fusion reactors can be achieved by using coaxial accelerators. The Compact Toroid Fueler (CTF) will inject high-speed, dense spheromak plasmoids into the Tokamak de Varennes (TdeV) to examine the feasibility of this approach as a fueler for future reactors. Here, a conceptual design study of the particle fueler for TdeV is presented. The issues of CTF design that are considered are formation and relaxation of an axisymmetric CT, optimization of accelerator performance to improve injector electrical efficiency, separation of formation and acceleration phases to improve injector reproducibility, minimization of entrained impurities in the CT, and minimization of neutral gas load to the tokamak following CT fueling. The CTF injector will test theories on CT/tokamak interaction related to reactor fueling. Among the eventual physics questions addressed are the multiple-pulse requirements for future injectors, the bootstrap current enhancement factor, CT fuel confinement times, impurity effects, plasma heating, injector electrical efficiency, and the effect of gas load on the tokamak following CT injection.