ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE announces NEPA exclusion for advanced reactors
The Department of Energy has announced that it is establishing a categorical exclusion for the application of National Environmental Policy Act (NEPA) procedures to the authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors.
According to the DOE, this significant change, which goes into effect today, “is based on the experience of DOE and other federal agencies, current technologies, regulatory requirements, and accepted industry practice.”
Yoshiki Murakami*, Masayoshi Sugihara
Fusion Science and Technology | Volume 24 | Number 4 | December 1993 | Pages 375-390
Technical Paper | Plasma Engineering | doi.org/10.13182/FST93-A30188
Articles are hosted by Taylor and Francis Online.
Steady-state and hybrid-mode operation of a tokamak fusion reactor is investigated by power balance calculations, and operation points are optimized with respect to divertor heat load. The dependence of the divertor heat load on a variety of models is also discussed. Several schemes to reduce the heat load are investigated, and the goal of physics research and development is clarified. Hybrid-mode operation appears to be suitable for technology testing, which requires a long burn time and a high neutron wall load. The divertor heat load can be reduced to the ignition-mode level without impurity seeding if the energy confinement is enhanced by 10%. The relation between the divertor heat load and the controllability of the current profile, that is, the fraction of the beam-driven current, is also discussed.