ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
2025: The year in nuclear
As Nuclear News has done since 2022, we have compiled a review of the nuclear news that filled headlines and sparked conversations in the year just completed. Departing from the chronological format of years past, we open with the most impactful news of 2025: a survey of actions and orders of the Trump administration that are reshaping nuclear research, development, deployment, and commercialization. We then highlight some of the top news in nuclear restarts, new reactor testing programs, the fuel supply chain and broader fuel cycle, and more.
Yoshiki Murakami*, Masayoshi Sugihara
Fusion Science and Technology | Volume 24 | Number 4 | December 1993 | Pages 375-390
Technical Paper | Plasma Engineering | doi.org/10.13182/FST93-A30188
Articles are hosted by Taylor and Francis Online.
Steady-state and hybrid-mode operation of a tokamak fusion reactor is investigated by power balance calculations, and operation points are optimized with respect to divertor heat load. The dependence of the divertor heat load on a variety of models is also discussed. Several schemes to reduce the heat load are investigated, and the goal of physics research and development is clarified. Hybrid-mode operation appears to be suitable for technology testing, which requires a long burn time and a high neutron wall load. The divertor heat load can be reduced to the ignition-mode level without impurity seeding if the energy confinement is enhanced by 10%. The relation between the divertor heat load and the controllability of the current profile, that is, the fraction of the beam-driven current, is also discussed.