ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE announces NEPA exclusion for advanced reactors
The Department of Energy has announced that it is establishing a categorical exclusion for the application of National Environmental Policy Act (NEPA) procedures to the authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors.
According to the DOE, this significant change, which goes into effect today, “is based on the experience of DOE and other federal agencies, current technologies, regulatory requirements, and accepted industry practice.”
Yasumasa Tsuji
Fusion Science and Technology | Volume 24 | Number 4 | December 1993 | Pages 366-374
Technical Paper | Plasma Engineering | doi.org/10.13182/FST93-A30187
Articles are hosted by Taylor and Francis Online.
The helical force-free equation, ∇ × B = αB, has been solved analytically in a toroidal coordinates system for a torus of arbitrary aspect ratio without the approximation of a large aspect ratio. The three-dimensional force-free equation is reduced to a scalar Helmholtz equation. A set of analytical solutions for the Helmholtz equation in the torus is presented. With these solutions, the eigenvalues have been obtained for an aspect ratio R/a ≥ 7.5 and toroidal mode number −5 ≤ n ≤ 14. The difference in the eigenvalue between a torus and a cylinder becomes large in the case of a small aspect ratio and a large toroidal mode number. However, the smallest eigenvalues and the corresponding toroidal wave numbers are found to be in close agreement with those of a cylinder for R/a ≥ 1.5.