ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
2025: The year in nuclear
As Nuclear News has done since 2022, we have compiled a review of the nuclear news that filled headlines and sparked conversations in the year just completed. Departing from the chronological format of years past, we open with the most impactful news of 2025: a survey of actions and orders of the Trump administration that are reshaping nuclear research, development, deployment, and commercialization. We then highlight some of the top news in nuclear restarts, new reactor testing programs, the fuel supply chain and broader fuel cycle, and more.
Gerasimos Tinios, Steve F. Horne, Ian H. Hutchinson, Stephen M. Wolfe
Fusion Science and Technology | Volume 24 | Number 4 | December 1993 | Pages 355-365
Technical Paper | Plasma Engineering | doi.org/10.13182/FST93-A30186
Articles are hosted by Taylor and Francis Online.
The problem of reducing a complicated electromagnetic passive structure model coupled to a linear plasma response model to a size that allows rapid calculations of gains for plasma position and shape control is discussed. Model reduction through eigenmode decomposition does not reproduce the input-to-output relationship of the system unless one has a good idea of which eigenmodes are important. Hankel singular mode decomposition, on the other hand, provides an orthogonal basis for the system response, where the modes are ordered by their importance to the input-to-output relationship. A perturbed equilibrium plasma response model is used together with an electromagnetic model of the Alcator C-Mod passive structure to assess the performance of different model reduction schemes. Between 10 and 20 modes are required to give an adequate representation of the passive system. Emphasis is placed on keeping the reduction process independent of the parameters of the plasma to be controlled.