ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Deep Fission to break ground this week
With about seven months left in the race to bring DOE-authorized test reactors on line by July 4, 2026, via the Reactor Pilot Program, Deep Fission has announced that it will break ground on its associated project on December 9 in Parsons, Kansas. It’s one of many companies in the program that has made significant headway in recent months.
Lance L. Snead, Roger A. Vesey†
Fusion Science and Technology | Volume 24 | Number 1 | August 1993 | Pages 83-96
Technical Paper | Divertor System | doi.org/10.13182/FST93-A30176
Articles are hosted by Taylor and Francis Online.
The primary concerns in the design of a divertor component are the high heat fluxes (15 to 30 MW/m2) and the surface erosion due to plasma/wall interactions, along with the associated issue of plasma contamination. A continuous belt, which would pass between two rollers inside the vacuum vessel, is proposed as the divertor surface to provide higher heat flux handling capability as well as reduced total erosion. Thermal analyses indicate that a belt passing from one roller through the divertor region to a cooling roller can achieve a cycle-to-cycle steady state while maintaining acceptable temperatures. The belt speed determines the amount of plasma energy absorbed per cycle and thus determines the maximum belt temperature and the requirements of the cooling roller. The belt material initially considered is a metal matrix/carbon fiber composite in which the carbon fibers are oriented out-of-plane in a 1-mm-thick metal belt. The carbon fibers protrude from the plasma-facing side of the belt, presenting the plasma ions a low-Z surface to impact. Because the belt surf ace passes through the entire divertor region, the erosion due to sputtering is uniform along the belt. Estimated gross erosion rates for a 7-m belt at expected International Thermonuclear Experimental Reactor (ITER) conditions are 5 to 10 cm/burn-yr. Electromagnetic forces and secondary magnetic fields induced by the belt motion appear manageable for a sufficiently resistive or toroidally segmented belt. In situ deposition of a sacrificial carbon layer will be required to replace eroded material. Such a belt also offers the possibility of continuous removal of the plasma-codeposited carbon and tritium layer prior to deposition of the sacrificial carbon.