ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
2025: The year in nuclear
As Nuclear News has done since 2022, we have compiled a review of the nuclear news that filled headlines and sparked conversations in the year just completed. Departing from the chronological format of years past, we open with the most impactful news of 2025: a survey of actions and orders of the Trump administration that are reshaping nuclear research, development, deployment, and commercialization. We then highlight some of the top news in nuclear restarts, new reactor testing programs, the fuel supply chain and broader fuel cycle, and more.
Marco Nassi
Fusion Science and Technology | Volume 24 | Number 1 | August 1993 | Pages 50-64
Technical Paper | Magnet System | doi.org/10.13182/FST93-A30174
Articles are hosted by Taylor and Francis Online.
The definitions and correlations existing between different terms used by physicists and engineers are clarified in order to deal with the assessment of the poloidal flux requirement in a fusion experiment. The theoretical formulation of both the Faraday and the Poynting methods, for the internal flux evaluation, is briefly reviewed. Heuristic expressions that allow estimates of internal flux consumption are reported for the specific case of an ignition experiment represented by the Ignitor configuration. The analytical and heuristic results for both internal and external poloidal flux requirements are checked against numerical evaluations carried out by using the TSC transport and magnetohydrodynamics code and the TEQ equilibrium code. A fairly good agreement between the different estimates is found. This suggests that simple heuristic expressions can be used to evaluate the poloidal flux requirement of future experiments, even if a detailed simulation of the plasma current penetration process is strongly recommended to correctly assess and optimize the resistive poloidal flux consumption. Finally, the poloidal flux requirement for different plasma scenarios in the Ignitor experiment is compared with the magnetic flux variation that can be delivered by the poloidal field system.