ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
Applications open for the fall cohort of Mentor Match
Applications are officially open for the second cohort of the American Nuclear Society’s newly redesigned mentoring program. Mentor Match is a unique opportunity available only to ANS members that offers year-round mentorship and networking opportunities to Society members at any point in their education.
The deadline to apply for membership in the fall cohort, which will take place October 1–November 30, is September 17. The application form can be found here.
S. Lomperski, Michael L. Corradini
Fusion Science and Technology | Volume 24 | Number 1 | August 1993 | Pages 5-16
Technical Paper | Blanket Engineering | doi.org/10.13182/FST93-A30170
Articles are hosted by Taylor and Francis Online.
The interaction of molten-lithium droplets with water is studied experimentally. In one set of experiments, droplets of ∼10- to 15-mm diameter are injected into a vessel filled with water. The reaction is filmed, and pressure measurements are made. The initial metal and water temperatures range from 200 to 500°C and 20 to 70°C, respectively. It is found that when reactant temperatures are high, an explosive reaction often occurs. When the initial lithium temperature is >400°C and the water is >30°C, the explosive reactions become much more probable, with pressure peaks as high as 4 MPa. The reaction is modeled to explain the temperature threshold for this metal-ignition phenomena. Results with the model support the hypothesis that explosive reactions occur when the lithium droplet surface reaches its saturation temperature while the hydrogen film surrounding the drop is relatively thin. A second set of experiments measures the reaction rate of nonexplosive lithium-water reactions. The test geometry parallels that of the previous experiments, and the reactant temperature combinations are deliberately kept below the observed ignition threshold. Two separate methods are used to determine the reaction rate in each test: One uses a three-color pyrometer to measure the drop temperature as the lithium rises through the water, while the other consists of a photographic technique that measures the amount of hydrogen generated. Measured reaction rates range from ∼10 to 50 mol/s · m2 with good agreement between the two measurement techniques. The data do not show any significant variation in the reaction rate as a function of either the initial water or initial lithium temperature.