ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
S. Lomperski, Michael L. Corradini
Fusion Science and Technology | Volume 24 | Number 1 | August 1993 | Pages 5-16
Technical Paper | Blanket Engineering | doi.org/10.13182/FST93-A30170
Articles are hosted by Taylor and Francis Online.
The interaction of molten-lithium droplets with water is studied experimentally. In one set of experiments, droplets of ∼10- to 15-mm diameter are injected into a vessel filled with water. The reaction is filmed, and pressure measurements are made. The initial metal and water temperatures range from 200 to 500°C and 20 to 70°C, respectively. It is found that when reactant temperatures are high, an explosive reaction often occurs. When the initial lithium temperature is >400°C and the water is >30°C, the explosive reactions become much more probable, with pressure peaks as high as 4 MPa. The reaction is modeled to explain the temperature threshold for this metal-ignition phenomena. Results with the model support the hypothesis that explosive reactions occur when the lithium droplet surface reaches its saturation temperature while the hydrogen film surrounding the drop is relatively thin. A second set of experiments measures the reaction rate of nonexplosive lithium-water reactions. The test geometry parallels that of the previous experiments, and the reactant temperature combinations are deliberately kept below the observed ignition threshold. Two separate methods are used to determine the reaction rate in each test: One uses a three-color pyrometer to measure the drop temperature as the lithium rises through the water, while the other consists of a photographic technique that measures the amount of hydrogen generated. Measured reaction rates range from ∼10 to 50 mol/s · m2 with good agreement between the two measurement techniques. The data do not show any significant variation in the reaction rate as a function of either the initial water or initial lithium temperature.