ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Maxime Rabeau, John H. Pitts, Jean-François Mengué, Gérard Maurin
Fusion Science and Technology | Volume 23 | Number 3 | May 1993 | Pages 337-341
Techincal Note | ICF Driver Technology | doi.org/10.13182/FST23-337
Articles are hosted by Taylor and Francis Online.
Geometrical arrangements for locating the large number of beamlets used in high-energy laser fusion facilities around a target chamber, suitable for the 1- to 2-MJ Phebus upgrade facility, are compared. The beamlets are clustered together and enter the target chamber area from two opposite poles. Beamlets from two different amplifier regions are interlaced around four pairs of conical surfaces, so that more symmetrical illumination of indirect drive targets is possible even when only some of the amplifiers are operational. A passive system is proposed to protect the focus lenses from X rays, ion debris, and internal target chamber pollutants. The system includes sacrificial debris shields and a static, ∼2-m length of incondensable gas. A crosswise orientation allows for maximum operational flexibility; an in-line orientation uses three fewer mirrors per beamlet but requires a larger target chamber room and longer laser bays. Neutron protection includes concrete shielding and also an ∼1- to 2-m-thick water shield positioned just inside the periphery of the target chamber room. Selected low-activation materials are used as much as possible inside the water shield to minimize the recovery time after a shot.