ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Dragonfly, a Pu-fueled drone heading to Titan, gets key NASA approval
Curiosity landed on Mars sporting a radioisotope thermoelectric generator (RTG) in 2012, and a second NASA rover, Perseverance, landed in 2021. Both are still rolling across the red planet in the name of science. Another exploratory craft with a similar plutonium-238–fueled RTG but a very different mission—to fly between multiple test sites on Titan, Saturn’s largest moon—recently got one step closer to deployment.
On April 25, NASA and the Johns Hopkins University Applied Physics Laboratory (APL) announced that the Dragonfly mission to Saturn’s icy moon passed its critical design review. “Passing this mission milestone means that Dragonfly’s mission design, fabrication, integration, and test plans are all approved, and the mission can now turn its attention to the construction of the spacecraft itself,” according to NASA.
Maxime Rabeau, John H. Pitts, Jean-François Mengué, Gérard Maurin
Fusion Science and Technology | Volume 23 | Number 3 | May 1993 | Pages 337-341
Techincal Note | ICF Driver Technology | doi.org/10.13182/FST23-337
Articles are hosted by Taylor and Francis Online.
Geometrical arrangements for locating the large number of beamlets used in high-energy laser fusion facilities around a target chamber, suitable for the 1- to 2-MJ Phebus upgrade facility, are compared. The beamlets are clustered together and enter the target chamber area from two opposite poles. Beamlets from two different amplifier regions are interlaced around four pairs of conical surfaces, so that more symmetrical illumination of indirect drive targets is possible even when only some of the amplifiers are operational. A passive system is proposed to protect the focus lenses from X rays, ion debris, and internal target chamber pollutants. The system includes sacrificial debris shields and a static, ∼2-m length of incondensable gas. A crosswise orientation allows for maximum operational flexibility; an in-line orientation uses three fewer mirrors per beamlet but requires a larger target chamber room and longer laser bays. Neutron protection includes concrete shielding and also an ∼1- to 2-m-thick water shield positioned just inside the periphery of the target chamber room. Selected low-activation materials are used as much as possible inside the water shield to minimize the recovery time after a shot.