ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Deep Fission to break ground this week
With about seven months left in the race to bring DOE-authorized test reactors on line by July 4, 2026, via the Reactor Pilot Program, Deep Fission has announced that it will break ground on its associated project on December 9 in Parsons, Kansas. It’s one of many companies in the program that has made significant headway in recent months.
Akinori Oda, Yasuyuki Nakao, Takashi Kuitani, Kazuhiko Kudo, Masao Ohta†
Fusion Science and Technology | Volume 23 | Number 3 | May 1993 | Pages 267-280
Technical Paper | Plasma Engineering | doi.org/10.13182/FST93-A30156
Articles are hosted by Taylor and Francis Online.
The possibility of passive and active burn stabilization of ignited deuterium-tritium (D-T) tokamak plasmas allowing for radial motion is studied by using a zero-dimensional transport model. Analyses are based on a linear stability method and a nonlinear dynamic simulation. The results are principally given for a self-ignited International Thermonuclear Experimental Reactor (ITER)-grade plasma. The radial motion has a stabilizing effect in a plasma with ITER89 scaling. It is impractical, however, to expect the radial motion to passively stabilize the burning plasma. A compression-decompression scheme based on regulation of the vertical field sufficiently stabilizes the plasma with ITER89 scaling. This control scheme requires some space for radial motion. The radial space requirement needed to manage a certain temperature perturbation is typically written as δR/R0 ≈ 0.6δT/T0. The allowable magnitude of temperature perturbation is within only 0.5% for δR = 2 cm. The extra space requirement would be the most severe problem in this control scheme. If the fraction GT of alpha-particle power loss due to field ripple is significant, the requirement on radial space might be considerably relaxed. Preliminary calculations have shown that δR/R0 ≈ 0.3δT/T0 might be achievable for GT = 20%.