ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Dragonfly, a Pu-fueled drone heading to Titan, gets key NASA approval
Curiosity landed on Mars sporting a radioisotope thermoelectric generator (RTG) in 2012, and a second NASA rover, Perseverance, landed in 2021. Both are still rolling across the red planet in the name of science. Another exploratory craft with a similar plutonium-238–fueled RTG but a very different mission—to fly between multiple test sites on Titan, Saturn’s largest moon—recently got one step closer to deployment.
On April 25, NASA and the Johns Hopkins University Applied Physics Laboratory (APL) announced that the Dragonfly mission to Saturn’s icy moon passed its critical design review. “Passing this mission milestone means that Dragonfly’s mission design, fabrication, integration, and test plans are all approved, and the mission can now turn its attention to the construction of the spacecraft itself,” according to NASA.
José M. Martínez-Val, Mireia Piera
Fusion Science and Technology | Volume 23 | Number 2 | March 1993 | Pages 218-226
Technical Note | ICF Target | doi.org/10.13182/FST93-A30149
Articles are hosted by Taylor and Francis Online.
Two regimes of hydrodynamic evolution are found in the analysis of the performance of small-scale heavy-ion-driven targets. One leads to high density and high compression with moderate temperatures (∼1 keV) for driving energies of 100 kJ for 0.1-mg deuterium-tritium targets. Ignition can then be triggered by a second ion pulse (∼50 kJ). Breakeven could be obtained if a burnup fraction as small as 1% is obtained. The second regime leads to very high temperatures in the central part of the fuel, while the rest of the fuel remains at moderate temperatures (<1 keV), and the density is very low everywhere. Propagated ignition cannot occur in this case because of the small optical thickness of the compressed fuel (<0.1 g/cm2).