ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
November 2025
Fusion Science and Technology
Latest News
Sellafield awards $6B ‘high hazard risk reduction’ framework contract
Sellafield Ltd., the site license company overseeing the decommissioning of the United Kingdom’s Sellafield nuclear site in Cumbria, England, has awarded a 15-year framework contract worth up to £4.6 billion ($6 billion) to support “high hazard risk reduction programs” at the site.
José M. Martínez-Val, Mireia Piera
Fusion Science and Technology | Volume 23 | Number 2 | March 1993 | Pages 218-226
Technical Note | ICF Target | doi.org/10.13182/FST93-A30149
Articles are hosted by Taylor and Francis Online.
Two regimes of hydrodynamic evolution are found in the analysis of the performance of small-scale heavy-ion-driven targets. One leads to high density and high compression with moderate temperatures (∼1 keV) for driving energies of 100 kJ for 0.1-mg deuterium-tritium targets. Ignition can then be triggered by a second ion pulse (∼50 kJ). Breakeven could be obtained if a burnup fraction as small as 1% is obtained. The second regime leads to very high temperatures in the central part of the fuel, while the rest of the fuel remains at moderate temperatures (<1 keV), and the density is very low everywhere. Propagated ignition cannot occur in this case because of the small optical thickness of the compressed fuel (<0.1 g/cm2).