ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
Applications open for the fall cohort of Mentor Match
Applications are officially open for the second cohort of the American Nuclear Society’s newly redesigned mentoring program. Mentor Match is a unique opportunity available only to ANS members that offers year-round mentorship and networking opportunities to Society members at any point in their education.
The deadline to apply for membership in the fall cohort, which will take place October 1–November 30, is September 17. The application form can be found here.
Om Prakash Joneja, Michel Schaer, Cherif Sahraoui, J.-P. Schneeberger, Vijay R. Nargundkar, K. Subba Rao
Fusion Science and Technology | Volume 23 | Number 4 | July 1993 | Pages 408-418
Technical Paper | Blanket Engineering | doi.org/10.13182/FST93-A30133
Articles are hosted by Taylor and Francis Online.
It is important to know the neutron yield, the spatial distribution, and the spectra emitted from a generator when performing any quantitative measurements. An extremely intense (d, t)-driven neutron generator is used in the LOTUS fusion blanket program. The planned measurements include integral tritium and 233U breeding as well as heat deposition rate studies in blankets representative of fusion reactor blankets. Quantitative estimates of these integral parameters demand precise determination of the characteristics of the neutron generator. Extensive foil activation measurements have been carried out to determine the reaction rate distribution and the neutron yield by a proposed method. A comparison between the calculated and measured reaction rates and the distribution confirm the adequacy of the cross-section sets and the geometry description of the complete experimental arrangement.