ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Om Prakash Joneja, J.-P. Schneeberger, Vijay R. Nargundkar
Fusion Science and Technology | Volume 23 | Number 4 | July 1993 | Pages 400-407
Technical Paper | Blanket Engineering | doi.org/10.13182/FST93-A30132
Articles are hosted by Taylor and Francis Online.
Integral tritium production rate (TPR) measurements are important in comparisons of calculations to ascertain the suitability of computer codes and cross-section sets used in calculation. At the LOTUS facility, one of the objectives is to make measurements with different types of pure fusion and hybrid blankets and compare the results with calculations. Since the concrete cavity housing the blankets is small, it is of direct relevance to determine the influence of room-reflected neutrons on the integral TPR and, if possible, to reduce this effect by special absorbers. The effects on the TPR of a stainless steel—natural lithium—graphite-reflected blanket due to the concrete structure, B4C filter, and boron-loaded sheets covering the assembly are studied. Calculations are performed by the MCNP Monte Carlo code. Since the room-returned component depends strongly on the composition of the concrete and, moreover, does not correspond to a real blanket situation, it is advisable to compare measurements with calculations for the region where such interference is minimal. A central region measuring 30.15 × 26.25 × 60 cm3 is identified for the purpose of comparison. In addition to calculations for a fully homogenized blanket, the important central blanket region is considered in the form of rods, and the remaining blanket as a homogeneous region, to assess the effect of neutron streaming on the TPR of the assembly. An experiment is done by irradiating several Li2CO3 probes positioned in each tube so that the central region of interest is fully covered. The activity of the probes is measured by the standard liquid scintillation method, and the TPR for the entire region can be derived from the experimental reaction rate data. The complete details of the calculational model and the experimental procedure are provided. Good agreement is found between the calculated and experimental TPRs after accounting for various sources of errors. This suggests that the three-dimensional description of the source and the blanket arrangement employed for the calculations are quite satisfactory.