ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Robert T. Bush
Fusion Science and Technology | Volume 22 | Number 2 | September 1992 | Pages 301-322
Technical Note on Cold Fusion | doi.org/10.13182/FST92-A30114
Articles are hosted by Taylor and Francis Online.
Mills and Kneizys presented data in support of a light water “excess heat” reaction obtained with an electrolytic cell highly reminiscent of the Fleischmann-Pons “cold fusion” cell. The claim of Mills and Kneizys that their excess heat reaction can be explained on the basis of a novel chemistry, which supposedly also explains cold fusion, is rejected in favor of their reaction being, instead, a light water cold fusion reaction. If it is the first known light water cold fusion reaction to exhibit excess heat, it may serve as a prototype to expand our understanding of cold fusion. From this new hypothetical vantage point, a number of potential nuclear reactions are deduced, including those common to past cold fusion studies. This broader pattern of nuclear reactions is typically seen to involve a fusion of the nuclides of the alkali atoms with the simplest of the alkali-type nuclides, namely, protons, deuterons, and tritons. Thus, the term “alkali-hydrogen fusion” seems appropriate for this new type of reaction with three subclasses: alkali-hydrogen fusion, alkali-deuterium fusion, and alkali-tritium fusion. A significant part of the difference between alkali-hydrogen fusion and thermonuclear fusion is hypothesized to involve an effect that is essentially the opposite of the well-known Mössbauer effect. Transfer of energy to the lattice is shown to be consistent with the uncertainty principle and special relativity. The implications of alkali-hydrogen fusion for theoretical models for cold fusion are considered. Boson properties are suggested to be unimportant for alkali-hydrogen fusion, which apparently rules out the prospect that a Bose-Einstein condensation could be involved in cold fusion. A new three-dimensional transmission resonance model (TRM) is sketched that avoids Jände's criticism of the one-dimensional TRM. When the new TRM is coupled with the alkali-hydrogen fusion hypothesis for cold fusion, it suggests a solution for the surface, or near-surface, excess heat effect for cold fusion in the form of a reaction between 6Li and a deuteron to produce 4He, or between two deuterons to produce predominantly 4He. A lattice effect essentially opposite to an “umklapp” process suggests that energy should be given to the lattice in the reaction. Finally, preliminary experimental evidence in support of the hypothesis o f a light water nuclear reaction and alkali-hydrogen fusion is reported. Excess heat has been detected with light water-based electrolytes for the separate cases of K2CO3, Na2CO3, Rb2CO3, and RbOH. Preliminary evidence for a correlation between the amount of elemental strontium produced in the case of Rb2CO3 as the electrolyte, or of elemental calcium produced in the case of K2CO3 as the electrolyte, and the total excess heats produced in the respective cells has been mixed. Evidence is presented that appears to strongly implicate the transmission resonance phenomenon of the new TRM.