ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Ulrich Fischer
Fusion Science and Technology | Volume 22 | Number 2 | September 1992 | Pages 251-270
Technical Paper | Blanket Engineering | doi.org/10.13182/FST92-A30108
Articles are hosted by Taylor and Francis Online.
One-dimensional neutronic calculations in a simple geometrical model, which are used frequently in blanket design and shielding analyses, are qualified by a comparison with three-dimensional calculations in a realistic tokamak model. The Next European Torus (NET) reactor is used as an example of a well-developed design for a “next-step” tokamak machine. Various blanket concepts with different neutronic characteristics are taken into account: a helium-cooled solid breeder blanket with beryllium as neutron multiplier, a self-cooled liquid-metal blanket with the eutectic alloy Pb-17Li, or, alternatively, pure lithium as breeding material/coolant and an aqueous lithium salt solution blanket. The calculations are performed with the MCNP Monte Carlo code, both in the one- and the three-dimensional approach. It is shown that the use of the one-dimensional approach can be justified for design and shielding calculations, if the plasma source is normalized in a consistent manner and both its radial distribution and its angular dependence are chosen appropriately. The latter requirement necessitates the use of an anisotropic neutron source distribution in the one-dimensional calculation. The tritium breeding ratio is overestimated in the one-dimensional approach to a degree that depends on the neutronic characteristics of the blanket variants used. A blanket concept evaluation, therefore, is valid only on the basis of three-dimensional calculations in the actual tokamak geometry. One-dimensional shielding calculations on average agree rather well with three-dimensional ones, although they do not allow “safe” results to be obtained. As the safety margins for the shielding system in general are crucial, a proof by three-dimensional shielding calculations in the real tokamak geometry is required.