ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE announces NEPA exclusion for advanced reactors
The Department of Energy has announced that it is establishing a categorical exclusion for the application of National Environmental Policy Act (NEPA) procedures to the authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors.
According to the DOE, this significant change, which goes into effect today, “is based on the experience of DOE and other federal agencies, current technologies, regulatory requirements, and accepted industry practice.”
O. P. Joneja, P. Scherrer, J.-P. Schneeberger
Fusion Science and Technology | Volume 22 | Number 2 | September 1992 | Pages 243-250
Technical Paper | Blanket Engineering | doi.org/10.13182/FST92-A30107
Articles are hosted by Taylor and Francis Online.
A double ionization chamber employing a thin coating of enriched 6LiF radiating material offers an effective means of identifying a 6Li(n, α)t reaction. The concept is based on the detection of ionization caused by alpha particles and tritons. The charged particles emitted in opposite directions can be detected by a double parallel plate ionization chamber configuration. This method can therefore be employed to directly measure tritium breeding rates inside the fusion blankets. Complete details of the parameters that govern the response of such a detector system are described. A Monte Carlo scheme is developed to determine the direction and energy lost by the particles in traversing various media, and the detector response is calculated from the energy deposited in the ionization region of each chamber. The calculations are performed for the entire energy range of neutrons available in the fusion blankets.