ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
2025: The year in nuclear
As Nuclear News has done since 2022, we have compiled a review of the nuclear news that filled headlines and sparked conversations in the year just completed. Departing from the chronological format of years past, we open with the most impactful news of 2025: a survey of actions and orders of the Trump administration that are reshaping nuclear research, development, deployment, and commercialization. We then highlight some of the top news in nuclear restarts, new reactor testing programs, the fuel supply chain and broader fuel cycle, and more.
Ronald D. Boyd, Xiaowei Meng
Fusion Science and Technology | Volume 22 | Number 4 | December 1992 | Pages 501-510
Technical Paper | First-Wall Technology | doi.org/10.13182/FST92-A30086
Articles are hosted by Taylor and Francis Online.
Local heat transfer coefficients are predicted for turbulent water subcooled flow boiling through uniformly heated circular tubes. Correlations by Petukhov and by Shah are modified slightly. However, the correlation suggested by Kandlikar is improved significantly by requiring that it approach more accurate limits near the onset of fully developed boiling and the onset of nucleate boiling for subcooled flow. Excellent agreement is obtained with data corresponding to conditions of high inlet subcooling (183°C), high mass velocity (4.4 to 31.5 Mg/m2·s), and a large ratio of the axial coordinate to the diameter (95.5). The exit subcooling varies from 53.0 to 81.5°C. For smaller ratios (<50.0), the accuracy decreases. In all cases, the local film temperature is the characteristic temperature. When the associated critical heat flux (CHF) data are examined in a Stanton number-Peclet number space, St < 0.0065 and Pe > 105 in all cases. Comparisons with the Saha-Zuber criterion for bubble detachment show that moderately subcooled and high-velocity flows are characterized by a multiboundary layer phenomenon that includes an attached bubble layer. These results show that the bubble layer's existence can now be documented for a wide variety of fluids and conditions without flow visualizations. Unlike the hydrodynamic liquid separation initiated CHF suggested by Tong and Kutateladze, the present sparse evidence seems to point to a localized liquid dry out due to bubble crowding. In this case, the locus of the CHF (a) is very near the boundary for the onset of fully developed flow boiling and (b) follows similar trends of the boundaries for the onset of nucleate and fully developed flow boiling.