ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Deep Fission to break ground this week
With about seven months left in the race to bring DOE-authorized test reactors on line by July 4, 2026, via the Reactor Pilot Program, Deep Fission has announced that it will break ground on its associated project on December 9 in Parsons, Kansas. It’s one of many companies in the program that has made significant headway in recent months.
Vito Renda, Loris Papa, Antonio Soria
Fusion Science and Technology | Volume 22 | Number 4 | December 1992 | Pages 490-500
Technical Paper | First-Wall Technology | doi.org/10.13182/FST92-A30085
Articles are hosted by Taylor and Francis Online.
In the framework of the feasibility studies of the International Tokamak Experimental Reactor (ITER), the thermal behavior of the monoblock divertor plate has been investigated at the Joint Research Centre of the Commission of the European Communities. The design consists of cooling tubes embedded in a protective armor of graphite, a material that has given good results in plasma physics experiments. Previous parametric studies, based on a thermal flux peak of 15 MW/m2 and different materials, led to the choice of a Mo-Re alloy for the tubes and a high-conductivity carbon-fiber composite called SEP for the graphite armor. To comply with a design temperature of 1273 K, an allowable protective layer only 5 mm thick was indicated; however, because of the high erosion rate due to sputtering, the lifetime of such a plate would be unacceptable from an engineering stand-point. To overcome this difficulty, it has been proposed that the separatrix be swept to lower the flux peak during the transient. The nominal working condition then becomes a sweeping of the separatrix moving around the null point with a radius of 30 mm and a frequency of 0.3 Hz; this generates a thermal load varying in time on the divertor plates. The results lead to the conclusion that plasma sweeping can reduce the surface temperature peak of the divertor, allowing a 16-mm-thick protective layer of the armor. A preliminary accident analysis shows the following: