ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Vito Renda, Loris Papa, Antonio Soria
Fusion Science and Technology | Volume 22 | Number 4 | December 1992 | Pages 490-500
Technical Paper | First-Wall Technology | doi.org/10.13182/FST92-A30085
Articles are hosted by Taylor and Francis Online.
In the framework of the feasibility studies of the International Tokamak Experimental Reactor (ITER), the thermal behavior of the monoblock divertor plate has been investigated at the Joint Research Centre of the Commission of the European Communities. The design consists of cooling tubes embedded in a protective armor of graphite, a material that has given good results in plasma physics experiments. Previous parametric studies, based on a thermal flux peak of 15 MW/m2 and different materials, led to the choice of a Mo-Re alloy for the tubes and a high-conductivity carbon-fiber composite called SEP for the graphite armor. To comply with a design temperature of 1273 K, an allowable protective layer only 5 mm thick was indicated; however, because of the high erosion rate due to sputtering, the lifetime of such a plate would be unacceptable from an engineering stand-point. To overcome this difficulty, it has been proposed that the separatrix be swept to lower the flux peak during the transient. The nominal working condition then becomes a sweeping of the separatrix moving around the null point with a radius of 30 mm and a frequency of 0.3 Hz; this generates a thermal load varying in time on the divertor plates. The results lead to the conclusion that plasma sweeping can reduce the surface temperature peak of the divertor, allowing a 16-mm-thick protective layer of the armor. A preliminary accident analysis shows the following: