ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Deep Fission to break ground this week
With about seven months left in the race to bring DOE-authorized test reactors on line by July 4, 2026, via the Reactor Pilot Program, Deep Fission has announced that it will break ground on its associated project on December 9 in Parsons, Kansas. It’s one of many companies in the program that has made significant headway in recent months.
George H. Miley, V. Varadarajan
Fusion Science and Technology | Volume 22 | Number 4 | December 1992 | Pages 425-438
Alpha-Particle Special | doi.org/10.13182/FST92-A30078
Articles are hosted by Taylor and Francis Online.
Adaptive control techniques can be applied to online gain tuning of tokamak thermokinetics. Here, a self-tuning control scheme is explored for both the plasma profile and power control. The distributed parameter system of the flux-surface-averaged one-dimensional transport equations is discretized by a nonlinear variational procedure. A finite-dimensional multiple-input/multiple-output control algorithm is derived using the linearized equations. A particular class of nonlinear three-parameter profiles is used for plasma density, temperature, and deuterium fraction profiles. Feedback gains are determined using a simplified minimum variance control law of self-tuning control. In the examples, normal multiple-output specifications for the plasma profile parameters for the density and power control are shown to be controllable by multiple-particle inputs alone.