ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
Disease-resistant cauliflower created through nuclear science
International Atomic Energy Agency researchers have helped scientists on the Indian Ocean island nation of Mauritius to develop a variety of cauliflower that is resistant to black rot disease. The cauliflower was developed through innovative radiation-induced plant-breeding techniques employed by the Joint Food and Agriculture Organization (FAO)/IAEA Centre of Nuclear Techniques in Food and Agriculture.
Francesco Celani, Antonio Spallone, Lorella Liberatori, Fausto Croce, Lucio Storelli, Stefano Fortunati, Mario Tului, Nicola Sparvieri
Fusion Science and Technology | Volume 22 | Number 1 | August 1992 | Pages 181-186
Technical Note | doi.org/10.13182/FST92-A30069
Articles are hosted by Taylor and Francis Online.
Following experiments performed with deuterided high-temperature superconductors (HTSCs) at the underground Gran Sasso Laboratory, the capacity of these materials to absorb deuterium and the role played by nonequilibrium conditions in neutron burst emissions in the framework of cold fusion have been determined. Taking into account that HTSC materials such as Y1Ba2Cu3O7-δ (YBCO) are able to absorb deuterium without destroying the crystalline structure, deuterated YBCO pellets were placed in a neutron radiation field, and thermal cycles were operated. In this double nonequilibrium condition, neutron rate enhancement was sought by selecting “time-correlated” burst-like events. The pellets and high-pressure D2 gas were enclosed in a stainless steel vessel, and thermal cycles (300 to 77 to 300 K) were performed; moreover, for comparison, background and blank runs were performed. A specific acquisition system, able to detect multiple neutron signals in defined time windows, was set up. One thermal cycle run showed a large increase (seven times more, corresponding to >30 standard deviations) of time-correlated events with respect to the blanks. In another run, although no relevant mean value increase in events was detected, one interesting multiple (triple) neutron signal occurred at a temperature (∼95 K) close to the transition from superconducting to the normal state. These multiple events were sporadic (detected twice during four thermal cycles lasting ∼3 h), although the probability that these events were simulated by the background was quite low (one incident expected in 80 h). Similar runs produced no relevant values. Another experiment, at constant temperature (300 K), characterized by a heavy D2 gas refill, showed both some increase in time-correlated events and a few triple neutron signals.