ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Francesco Celani, Antonio Spallone, Lorella Liberatori, Fausto Croce, Lucio Storelli, Stefano Fortunati, Mario Tului, Nicola Sparvieri
Fusion Science and Technology | Volume 22 | Number 1 | August 1992 | Pages 181-186
Technical Note | doi.org/10.13182/FST92-A30069
Articles are hosted by Taylor and Francis Online.
Following experiments performed with deuterided high-temperature superconductors (HTSCs) at the underground Gran Sasso Laboratory, the capacity of these materials to absorb deuterium and the role played by nonequilibrium conditions in neutron burst emissions in the framework of cold fusion have been determined. Taking into account that HTSC materials such as Y1Ba2Cu3O7-δ (YBCO) are able to absorb deuterium without destroying the crystalline structure, deuterated YBCO pellets were placed in a neutron radiation field, and thermal cycles were operated. In this double nonequilibrium condition, neutron rate enhancement was sought by selecting “time-correlated” burst-like events. The pellets and high-pressure D2 gas were enclosed in a stainless steel vessel, and thermal cycles (300 to 77 to 300 K) were performed; moreover, for comparison, background and blank runs were performed. A specific acquisition system, able to detect multiple neutron signals in defined time windows, was set up. One thermal cycle run showed a large increase (seven times more, corresponding to >30 standard deviations) of time-correlated events with respect to the blanks. In another run, although no relevant mean value increase in events was detected, one interesting multiple (triple) neutron signal occurred at a temperature (∼95 K) close to the transition from superconducting to the normal state. These multiple events were sporadic (detected twice during four thermal cycles lasting ∼3 h), although the probability that these events were simulated by the background was quite low (one incident expected in 80 h). Similar runs produced no relevant values. Another experiment, at constant temperature (300 K), characterized by a heavy D2 gas refill, showed both some increase in time-correlated events and a few triple neutron signals.