ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
Disease-resistant cauliflower created through nuclear science
International Atomic Energy Agency researchers have helped scientists on the Indian Ocean island nation of Mauritius to develop a variety of cauliflower that is resistant to black rot disease. The cauliflower was developed through innovative radiation-induced plant-breeding techniques employed by the Joint Food and Agriculture Organization (FAO)/IAEA Centre of Nuclear Techniques in Food and Agriculture.
Moishe Garfinkle
Fusion Science and Technology | Volume 22 | Number 1 | August 1992 | Pages 160-163
Technical Note | doi.org/10.13182/FST92-A30066
Articles are hosted by Taylor and Francis Online.
The recently reported detection of helium (albeit minuscule) with equivalent heat production using an electrochemical process at the University of Texas and at the Naval Weapons Center at China Lake were both attributed to intracrystalline nuclear fusion, which again brings to the fore this most controversial of subjects. However unlikely this fusion process, it is contended that an electrochemical process is particularly unsuited to the task of substantiating intracrystalline nuclear fusion because simultaneous thermochemical processes are occurring that can overshadow possible modest nuclear processes. Moreover, the presence in the electrolyte of extraneous reagents such as dissolved oxygen and salts further complicates interpretation of results. In light of these observations, an investigative method utilizing deuteron implantation with concurrent spectrometric analysis of reaction products is proposed.