ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
Disease-resistant cauliflower created through nuclear science
International Atomic Energy Agency researchers have helped scientists on the Indian Ocean island nation of Mauritius to develop a variety of cauliflower that is resistant to black rot disease. The cauliflower was developed through innovative radiation-induced plant-breeding techniques employed by the Joint Food and Agriculture Organization (FAO)/IAEA Centre of Nuclear Techniques in Food and Agriculture.
Krystyna Cedzynska, Fritz G. Will
Fusion Science and Technology | Volume 22 | Number 1 | August 1992 | Pages 156-159
Technical Note | doi.org/10.13182/FST92-A30065
Articles are hosted by Taylor and Francis Online.
A closed-system procedure for the analysis of tritium in palladium has been developed that has a sensitivity and accuracy of 5 × 107 tritium atoms, corresponding to one tritium atom per 1013 palladium atoms for a typical 0.1-g palladium sample. The technique involves palladium dissolution in acid, distillation of the tritiated water, and catalytic oxidation of tritium gas to tritiated water, followed by liquid scintillation counting. This technique is not subject to false tritium findings from a variety of chemical factors or environmental influences that may affect the results of open-system analytical procedures. The closed-system procedure has been applied to nearly 100 as-manufactured palladium wire samples of various lots and sizes from two different sources. None of these samples show any tritium contamination within the detection limit of 5 × 107 tritium atoms. By comparison, others, employing an open-system procedure, have reported tritium contamination in as-manufactured palladium 10000 times larger than the values obtained by this closed system method.