ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
Applications open for the fall cohort of Mentor Match
Applications are officially open for the second cohort of the American Nuclear Society’s newly redesigned mentoring program. Mentor Match is a unique opportunity available only to ANS members that offers year-round mentorship and networking opportunities to Society members at any point in their education.
The deadline to apply for membership in the fall cohort, which will take place October 1–November 30, is September 17. The application form can be found here.
Hesham Y. Khater, William F. Vogelsang
Fusion Science and Technology | Volume 22 | Number 1 | August 1992 | Pages 107-114
Technical Paper | D-3He/Fusion Reactor | doi.org/10.13182/FST92-A30060
Articles are hosted by Taylor and Francis Online.
A wide range of experimental radionuclide production cross sections has been collected for protons with energies similar to those protons produced in a D-3He fusion reactor. Proton energy-dependent cross sections (Ep ≤ 14.7 MeV) were used along with the proton stopping data of Anderson and Ziegler to produce a proton-induced thick-target radionuclide activation yield library. The library is linked to a computer program that calculates proton-induced radioactivity. Another potential source of radioactivity considered is the activity induced by neutrons produced from proton interactions with the reactor structure through (p, n) reactions. A computer program that evaluates the energy spectrum of these neutrons has been developed. The thick-target yield library and its associated programs have been used in an activation analysis study aimed at investigating the effect of proton-induced activity on the total level of radioactivity generated in Apollo-L2, a D-3He tokamak fusion power reactor. The proton-induced activity was more than two orders of magnitude less than the activity induced by the fusion neutrons at shutdown and more than one order of magnitude less ∼1 day after shutdown. The level of radioactivity induced by the (p, n) neutrons was found to be two to three orders of magnitude less than fusion neutron-induced radioactivity at any time following shutdown.