ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE announces NEPA exclusion for advanced reactors
The Department of Energy has announced that it is establishing a categorical exclusion for the application of National Environmental Policy Act (NEPA) procedures to the authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors.
According to the DOE, this significant change, which goes into effect today, “is based on the experience of DOE and other federal agencies, current technologies, regulatory requirements, and accepted industry practice.”
Yasuyuki Nakao, Takuro Honda, Hideki Nakashima, Yoshinori Honda, Kazuhiko Kudo
Fusion Science and Technology | Volume 22 | Number 1 | August 1992 | Pages 66-72
Technical Paper | D-3He/Fusion Reactor | doi.org/10.13182/FST92-A30055
Articles are hosted by Taylor and Francis Online.
The feasibility of using D-3He fuel in inertial confinement fusion is examined by using a hydrodynamics code that includes neutron and charged-particle transport routines. The use of a small amount of deuterium-tritium (D-T) ignitor is indispensable. Burn simulations are made for quasi-isobaric D-T/D-3He pellet models compressed to 5000 times the liquid density. Substantial fuel gains (∼500) are obtained from pellets having parameters ρRD-T = 3 g/cm2 and ρRtotal = 14 g/cm2 and a central spark temperature of 5 keV. The amount of driver energy needed to achieve these gains is estimated to be ∼30 MJ when the coupling efficiency is 10%. The driver energy requirement can be reduced by using spin-polarized D-T and D-3He fuels.