ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
H. Y. Khater, M. E. Sawan, I. N. Sviatoslavsky, L. J. Wittenberg, W. R. Meier
Fusion Science and Technology | Volume 21 | Number 3 | May 1992 | Pages 2138-2144
Blanket Shield and Neutronic | doi.org/10.13182/FST92-A30037
Articles are hosted by Taylor and Francis Online.
A detailed safety analysis was performed for the inertial confinement fusion reactor OSIRIS. The radioactivity induced in the carbon fabric chamber concrete shield and Flibe breeder is very low allowing for their disposal at the end of the reactor life as Class A low level waste (LLW). The biological dose rate after shutdown behind the reactor biological shield shield is very low (0.11 µmrem/hr) allowing only for hands-on maintenance. A total of 91.5 Ci/day are routinely released to the environment producing an off-site dose to the maximally exposed individual (MEI) of 2.43 mrem/yr at the reactor site boundary. Only a small fraction (0.2%) of the reactor first wall would be mobilized during a loss of coolant/loss of flow accident. The decay heat generated in the concrete shield is very low such that its temperature would only increase by less than 2 degrees during such an accident OSIRIS contains 660 tonnes of liquid Flibe as a coolant and breeder. A severe accident including a breach of the reactor building and chamber is estimated to release less than 0.5 kg of the activated Flibe to the environment. The total whole body (WB) early dose at the reactor site boundary during a pessimistic accident that includes the potential release of radioactive products from the chamber, shield and Flibe coolant would amount to 13.5 mrem. In addition, a 100% release of all the tritium steady state inventory (12.7 gm) inside the reactor building during operation would result in an additional 114 mrem of off-site dose. The total of 128 mrem off-site dose produced from OSIRIS eliminates the need for using N-stamp nuclear grade components in the reactor.