ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
2025: The year in nuclear
As Nuclear News has done since 2022, we have compiled a review of the nuclear news that filled headlines and sparked conversations in the year just completed. Departing from the chronological format of years past, we open with the most impactful news of 2025: a survey of actions and orders of the Trump administration that are reshaping nuclear research, development, deployment, and commercialization. We then highlight some of the top news in nuclear restarts, new reactor testing programs, the fuel supply chain and broader fuel cycle, and more.
W.M. Shu, K. Okuno, Y. Hayashi, S. Ohira, Y. Naruse
Fusion Science and Technology | Volume 21 | Number 3 | May 1992 | Pages 1934-1938
Material and Tritium | doi.org/10.13182/FST92-A30002
Articles are hosted by Taylor and Francis Online.
Ion implantation driven permeation (IDP) behavior on pure molybdenum has been investigated using deuterium ion with low energy (200–2000 eV). The experimental results include measurements of the dependence of the permeation rate at the steady state upon the incident ion flux, temperature and incident ion energy. A good linear relationship was observed between the permeation rate and the incident ion flux. This suggests that the IDP process through pure molybdenum was controlled by diffusion of deuterium in both the front and back regions. The temperature dependence of the permeation rate varies with the incident ion energy. It is caused by the different mechanism of diffusion of the hydrogen isotope in the front region due to the trapping effect for incident ion energy ranging from 1.5 to 2 keV, or the formation of a short diffusion path (H-SIA) for incident ion energy ranging from 200 to 500 eV.