ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
NRC nominee Nieh commits to independent safety mission
During a Senate Environment and Public Works Committee hearing today, Ho Nieh, President Donald Trump’s nominee to serve as a commissioner at the Nuclear Regulatory Commission, was urged to maintain the agency’s independence regardless of political pressure from the Trump administration.
Mervi J. Mantsinen, R. Rainer E. Salomaa
Fusion Science and Technology | Volume 33 | Number 3 | May 1998 | Pages 237-251
Technical Paper | doi.org/10.13182/FST98-A30
Articles are hosted by Taylor and Francis Online.
A time-dependent, volume-averaged particle and power balance code is used to investigate reactivity transients during tokamak startup and after sudden changes in the plasma confinement, fueling rates, and impurity concentrations in deuterium-tritium (D-T) and D-3He fusion reactors. For a given H-mode factor fH relative to the ITER89-P scaling law, a very narrow range of = part*/E values, limited by quenching of the fusion burn due to ash accumulation and by exceeding operational limits, is found to sustain steady fusion burn. The dependence of the large power overshoot taking place shortly after ignition due to ash accumulation on the assumed and fH is examined. To alleviate the excessive external heating power requirements for D-3He-reactor startup, schemes utilizing D-T fusion reactions are considered. Because of power transients of several hundreds of megawatts in reactors operating at a gigawatt level of fusion power, triggered by very small changes in the plasma confinement (