ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
D. B. Montgomery
Fusion Science and Technology | Volume 21 | Number 3 | May 1992 | Pages 1893-1897
Magnetic | doi.org/10.13182/FST92-A29995
Articles are hosted by Taylor and Francis Online.
The ITER Magnetics R&D plan developed during the Conceptual Design Activity identified the need to build both central solenoid (CS) and toroidal field (TF) model coils. In the CDA plan both model sets were circular. The CS model coil would have an inner diameter of 2 m, a field of 13 T and no case, whereas the TF model coils would have a 4 m diameter, a field of 11 T field, and a surrounding case. The U.S. has proposed instead that the TF model coil be down sized and made noncircular, so that a 2 m x 3.5 m model can be combined with the CS model coils, still allowing full simulation of the ITER TF stresses. This smaller assembly of coils, which would use full-scale conductors, would be less expensive to build, and would be more suitable for conducting an extensive set of cyclic extended performance tests. To compensate for the loss of large coil fabrication with the down-sizing of the TF model coil, the U.S. has propose that a full-scale ITER TF magnet double pancake, or two layers of a nested shell concept, be fabricated from production conductor, and that the coil element and its structure be cold tested in a prototypical “Q/A Production Test.”