ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
A. E. Hechanova, M. S. Kazimi
Fusion Science and Technology | Volume 21 | Number 3 | May 1992 | Pages 1880-1886
Plasma-Facing Component | doi.org/10.13182/FST92-A29993
Articles are hosted by Taylor and Francis Online.
A divertor composed of beryllium-coated copper tubes was analyzed for lifetime performance for near-term tokamaks. The thermal hydraulic analysis revealed the need for enhancing coolant heat transfer in order to avoid boiling in the water-cooled tube. The insertion of twisted tapes at the strike points was found to increase the heat transfer coefficient by more than 90 percent (from 59 to 113 kW/m2-K) and allow a 3 mm thick beryllium armor to remain below the desirable safety limit of 1073 K. Under normal operation, sputtering was estimated to result in an erosion rate of 0.0027 mm per 200-s pulse. Hard thermal quenches (plasma disruptions) were found to be the critical life-limiting divertor issue since up to 0.3 mm of beryllium could be vaporized per disruption event. This would require armor regeneration after 10 such disruptions. An analysis of the copper tube stresses suggests that primary and secondary stresses remain below their allowable limits under normal operations provided the ends of the plate are not restrained and allow for expansion.