ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
R. Matera, M. Merola
Fusion Science and Technology | Volume 21 | Number 3 | May 1992 | Pages 1873-1879
Plasma-Facing Component | doi.org/10.13182/FST92-A29992
Articles are hosted by Taylor and Francis Online.
The paper presents the conceptual study of an innovative divertor plate for the physical phase of the ITER/NET reactor. The main distinguishing feature of the new concept is the use of a single material, a Carbon Fibre reinforced Carbon (CFC) composite with ultra-high-thermal conductivity carbon fibres, for the whole structure, i.e. for the protective armour, heat sink and cooling channels. The main potential advantages of such a solution are perceived to be: elimination of the severe joint-interface problems inherent to other multimaterial solutions; weak interaction with runaway electrons; low-activation properties; reduction of mechanical stresses induced by electromagnetic transient. Moreover, the use of helium as a coolant leads to the following additional advantages: avoidance of the risk of burn-out; flexibility towards different operating scenarios; ease of baking at high temperature; lower tritium inventory in the CFC material; avoidance of the sharp pressure rise in cooling circuit because of water evaporation due to runaway electron impact. The thermal performance assessment shows that the maximum surface temperature can be kept below the threshold for radiation enhanced sublimation with comparable pumping power with that required by water cooling with turbulence promoters. After this study, which has to be considered as a first step in the iterative process for the development of a new component, the issue of the manufacturing feasibility in close collaboration with the composite industry will be addressed.