ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
Recent surveys confirm high levels of U.S. nuclear support
Surveys have consistently indicated that public support in the United States for the use of nuclear energy has been increasing in recent years. Four recent surveys continue to suggest that near-record-high numbers of Americans support nuclear energy. However, the survey results differ—sometimes widely—in the details of their findings.
M. A. Bourham, O. E. Hankins, J. G. Gilligan, J. D. Hurley, W. H. Eddy
Fusion Science and Technology | Volume 21 | Number 3 | May 1992 | Pages 1852-1857
Plasma-Facing Component | doi.org/10.13182/FST92-A29988
Articles are hosted by Taylor and Francis Online.
Heat fluences of 1–10 MJ/m2 and greater over 0.1–1 msec pulse durations are expected on the surfaces of plasma-facing components in large tokamaks during a plasma disruption. The formed vapor plasma (the boundary layer) absorbs a large fraction of the incident energy, and thus acts as a self protecting layer (vapor shield). Carbon materials (pyrolytic graphite and other graphite grades)) are used as plasma-facing components, and tungsten and refractory materials are potential candidates. The experimental test facility SIRENS has been used to expose carbon and tungsten materials to heat fluences between 0.2 and 6 MJ/m2 for 100 µs duration to characterize the performance of such materials under typical heat loading conditions.