ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
M. A. Bourham, O. E. Hankins, J. G. Gilligan, J. D. Hurley, W. H. Eddy
Fusion Science and Technology | Volume 21 | Number 3 | May 1992 | Pages 1852-1857
Plasma-Facing Component | doi.org/10.13182/FST92-A29988
Articles are hosted by Taylor and Francis Online.
Heat fluences of 1–10 MJ/m2 and greater over 0.1–1 msec pulse durations are expected on the surfaces of plasma-facing components in large tokamaks during a plasma disruption. The formed vapor plasma (the boundary layer) absorbs a large fraction of the incident energy, and thus acts as a self protecting layer (vapor shield). Carbon materials (pyrolytic graphite and other graphite grades)) are used as plasma-facing components, and tungsten and refractory materials are potential candidates. The experimental test facility SIRENS has been used to expose carbon and tungsten materials to heat fluences between 0.2 and 6 MJ/m2 for 100 µs duration to characterize the performance of such materials under typical heat loading conditions.