ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Chungpin Liao, Mujid S. Kazimi
Fusion Science and Technology | Volume 21 | Number 3 | May 1992 | Pages 1845-1851
Plasma-Facing Component | doi.org/10.13182/FST92-A29987
Articles are hosted by Taylor and Francis Online.
The divertor technology has become the focus of concern for prospective steady state tokamak reactors. The imposed heat flux and particle flux conditions cast doubt on the feasibility of any solid surface divertor. The aim of this work is to evaluate the feasibility of the existing concepts of liquid metal divertors from both the physics and engineering points of view. It is found that lithium is not a favorable liquid metal due to the large tritium inventory that may develop in the form of solid hydride LiH. Gallium, on the other hand, does not form hydride within the temperature range of interest, and hence is considered a favorable material. Slowly flowing thin film and pool type divertors are found to be undesirable owing to the possible blistering erosion and resulting plasma contamination. The popular concept of self-cooled liquid metal film divertor suffers mainly from the linear MHD instability, in addition to other complicating factors such as the variation of the liquid metal electric property, dynamics of halo current, and the compatibility problem of insulator coating with the liquid metal. The liquid gallium droplet curtain divertor is evaluated to be the most feasible. However, unless an effective helium pumping scheme can be developed, the goal of controling the neutral recycling coefficient by liquid metal divertors can not be accomplished.