ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
Russia withdraws from 25-year-old weapons-grade plutonium agreement
Russia’s lower house of Parliament, the State Duma, approved a measure to withdraw from a 25-year-old agreement with the United States to cut back on the leftover plutonium from Cold War–era nuclear weapons.
J. Galambos, C. Baker, Y-K. M. Peng, D. Cohn, M. Chaniotakis, L. Bromberg, S. O. Dean
Fusion Science and Technology | Volume 21 | Number 3 | May 1992 | Pages 1759-1764
Magnetic Fusion Reactor and Systems Studies | doi.org/10.13182/FST92-A29975
Articles are hosted by Taylor and Francis Online.
The TETRA systems code is used to examine devices with both normal copper and superconducting coils as vehicles for steady-state production of fusion power in a Pilot Plant. If the constraints of plasma ignition and net electrical power production are dropped, such devices are much smaller and less expensive than ITER-like devices. For wall loads near 0.5 MW/m2 with nominal ITER physics guidelines, devices with copper coils have major radii R near 2 m and direct costs near 1 × 109 $, while devices with superconducting coils have R = 4.1 m and costs of 2.4 × 109 $. However, the copper-coil devices have the burden of hundreds of megawatts of resistive power losses. All cases tend towards high aspect ratio (A > 4), high fields, and low current. The situation improves for the superconducting-coil cases if higher beta limits are permissible, whereas the copper-coil cases see less benefit from higher beta limits.