ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
J. Galambos, C. Baker, Y-K. M. Peng, D. Cohn, M. Chaniotakis, L. Bromberg, S. O. Dean
Fusion Science and Technology | Volume 21 | Number 3 | May 1992 | Pages 1759-1764
Magnetic Fusion Reactor and Systems Studies | doi.org/10.13182/FST92-A29975
Articles are hosted by Taylor and Francis Online.
The TETRA systems code is used to examine devices with both normal copper and superconducting coils as vehicles for steady-state production of fusion power in a Pilot Plant. If the constraints of plasma ignition and net electrical power production are dropped, such devices are much smaller and less expensive than ITER-like devices. For wall loads near 0.5 MW/m2 with nominal ITER physics guidelines, devices with copper coils have major radii R near 2 m and direct costs near 1 × 109 $, while devices with superconducting coils have R = 4.1 m and costs of 2.4 × 109 $. However, the copper-coil devices have the burden of hundreds of megawatts of resistive power losses. All cases tend towards high aspect ratio (A > 4), high fields, and low current. The situation improves for the superconducting-coil cases if higher beta limits are permissible, whereas the copper-coil cases see less benefit from higher beta limits.