ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
S.W. Haney, W.L. Barr, J.A. Crotinger, L.J. Perkins, C.J. Solomon, E.A. Chaniotakis, J.P. Freidberg, J. Wei, J.D. Galambos, J. Mandrekas
Fusion Science and Technology | Volume 21 | Number 3 | May 1992 | Pages 1749-1758
Magnetic Fusion Reactor and Systems Studies | doi.org/10.13182/FST92-A29974
Articles are hosted by Taylor and Francis Online.
A new code, named SUPERCODE, has been developed to fill the gap between currently available zero dimensional systems codes and highly sophisticated, multidimensional plasma performance codes. The former are comprehensive in content, fast to execute, but rather simple in terms of the accuracy of their physics and engineering models. The latter contain state-of-the-art plasma physics modeling but are limited in engineering content and are time consuming to run. The SUPERCODE upgrades the reliability and accuracy of systems codes by calculating the self consistent 1 1/2-D plasma evolution in a realistic engineering environment. By a combination of variational techniques and careful formulation there is only a modest increase in CPU time over 0-D runs, thereby making the SUPERCODE suitable for use as a systems studies tool. In addition, we have expended considerable effort to make the code user- and programmer-friendly, as well as operationally flexible, with the hope of encouraging wide usage throughout the fusion community.