ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
INL makes first fuel for Molten Chloride Reactor Experiment
Idaho National Laboratory has announced the creation of the first batch of enriched uranium chloride fuel salt for the Molten Chloride Reactor Experiment (MCRE). INL said that its fuel production team delivered the first fuel salt batch at the end of September, and it intends to produce four additional batches by March 2026. MCRE will require a total of 72–75 batches of fuel salt for the reactor to go critical.
Xiang M. Chen, Virgil E. Schrock, Per F. Peterson
Fusion Science and Technology | Volume 21 | Number 3 | May 1992 | Pages 1525-1530
Inertial Fusion Reactor Studies | doi.org/10.13182/FST92-A29936
Articles are hosted by Taylor and Francis Online.
Molten Flibe (Li2BeF4) salt is a candidate material for the liquid blanket in the HYLIFE-II inertial confinement fusion reactor. The thermodynamic properties of the liquid are very important for the study of the thermohydraulic behavior of the concept design, particularly, the compressible analysis of the blanket isochoric heating problem. In this paper, a soft sphere model equation of state, which was used for describing liquid metals previously, is deployed with slight modifications for fitting the available experimental data for liquid Flibe. It is found that within the available temperature range the model gives a good agreement with experimental data for density, enthalpy and speed of sound. Additionally the model provides reasonable isotherms, spinodal line and predicts a “critical point”. The results show that the model has good thermodynamic behavior, although for a material like Flibe the “critical point” phenomenon is more complex than for pure component material.