ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Nermin A. Uckan
Fusion Science and Technology | Volume 21 | Number 3 | May 1992 | Pages 1444-1448
International Thermonuclear Experimental Reactor | doi.org/10.13182/FST92-A29924
Articles are hosted by Taylor and Francis Online.
The ranges of confinement-relevant (dimensional and dimensionless) plasma parameters for major tokamaks (JET, JT-60U, TFTR, DIII-D, …) that are expected to contribute to the ITER Physics R&D in the 1990s have been analyzed to characterize confinement and plasma performance in ITER-like designs. We find that the largest tokamaks (JET, JT-60U) should be able to demonstrate H-mode operation (with ELMs, as in ITER) with nτETi values within an order of magnitude of those required in ITER and have relevant dimensionless plasma parameters (ρ/a, ν*, etc.) within a factor 2 of those in ITER. Extrapolations from dimensionally similar discharges in DIII-D and JET show high-Q/ignition operation in ITER-like plasmas at plasma currents (∼16 MA) well below the nominal (22-MA) design value. Another critical issue for achieving ignition-level plasma performance is the anomalous alpha particle effects, mainly the “toroidal Alfvén eigenmode” (TAE mode). The D-T experiments in TFTR and JET (and simulations using fast beam ions) should realize alpha particle (fast-ion) parameters roughly similar, in relation to TAE mode thresholds, to those projected for ITER. We judge that present-day tokamaks will provide a sufficient database (by the mid-1990s) on H-mode confinement (with ELMs) and possible anomalous alpha particle effects at relevant dimensionless parameters that are expected to be adequate for ITER purposes.