ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
INL makes first fuel for Molten Chloride Reactor Experiment
Idaho National Laboratory has announced the creation of the first batch of enriched uranium chloride fuel salt for the Molten Chloride Reactor Experiment (MCRE). INL said that its fuel production team delivered the first fuel salt batch at the end of September, and it intends to produce four additional batches by March 2026. MCRE will require a total of 72–75 batches of fuel salt for the reactor to go critical.
J.T. Hogan, N.A. Uckan
Fusion Science and Technology | Volume 21 | Number 3 | May 1992 | Pages 1397-1405
International Thermonuclear Experimental Reactor | doi.org/10.13182/FST92-A29918
Articles are hosted by Taylor and Francis Online.
Global MHD stability calculations using the PEST code have been carried out as part of the US ITER team's High Aspect Ratio Design (HARD) study. Approximately 15,000 cases have been evaluated both for global and local (ballooning) modes. In addition to aspect ratio variations [2.78 < A < 5], a range of shapes (1.4 < κ < 2.0, 0. < δ < 0.6) has been examined and the safety factor has been varied: q(0) was varied from 1.05 to 1.85 and qψ from 3.1 to 4.55. For global aspect ratio scaling, these results show no significant increase or decrease in the maximum Troyon parameter, within the level of variation imposed by profile differences: the scaling of the maximum Troyon parameter (g) is found to be independent of A, if optimal values are considered at each aspect ratio. Specific results for the HARD configuration (A = 4.0, κ = 2.0, δ = 0.4 and q = 3.1, 4) show that the grequired can be obtained with values of 1i(3) = 0.65 – 0.85 in both the ignition and steady state phases.