ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
2025: The year in nuclear
As Nuclear News has done since 2022, we have compiled a review of the nuclear news that filled headlines and sparked conversations in the year just completed. Departing from the chronological format of years past, we open with the most impactful news of 2025: a survey of actions and orders of the Trump administration that are reshaping nuclear research, development, deployment, and commercialization. We then highlight some of the top news in nuclear restarts, new reactor testing programs, the fuel supply chain and broader fuel cycle, and more.
E. Michael Campbell, William J. Hogan, W. Howard Lowdermilk
Fusion Science and Technology | Volume 21 | Number 3 | May 1992 | Pages 1344-1349
Magnetic and Inertial Fusion Experiment | doi.org/10.13182/FST92-A29910
Articles are hosted by Taylor and Francis Online.
The expeditious demonstration of ignition and gain in a laboratory Inertial Confinement Fusion (ICF) target has been identified by the National Academy of Sciences1 (NAS) and the Fusion Policy Advisory Committee2 (FPAC) as “the highest priority of the ICF Program.” Assuming that the near-term NAS-recommended preparatory milestones are met, they also concluded that the proposed Nova Upgrade would be the most expeditious way of achieving that goal. The Nova Upgrade would consist of an advanced, cost effective Nd:glass laser that would deliver 1–2 MJ of 0.35 µm light to a target chamber for indirect drive target experiments in which as much as 20 MJ of thermonuclear yield could result. After achieving ignition and gain, further experiments on the facility will allow development of optimized targets for Inertial Fusion Energy (IFE) reactors, simulation of some aspects of ion beam targets, and development of reactor first wall concepts. The targets developed on Nova Upgrade will potentially be suitable for use in an early, low-power engineering test facility (ETF) as the next step in IFE development.