ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE announces NEPA exclusion for advanced reactors
The Department of Energy has announced that it is establishing a categorical exclusion for the application of National Environmental Policy Act (NEPA) procedures to the authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors.
According to the DOE, this significant change, which goes into effect today, “is based on the experience of DOE and other federal agencies, current technologies, regulatory requirements, and accepted industry practice.”
J.D. Kilkenny, H.A. Baldis, S.H. Batha, M.D. Cable, E.M. Campbell, R.C. Cook, C.B. Darrow, T. Dittrich, R.J. Ellis, S.G. Glendinning, S.W. Haan, B.A. Hammel, S.P. Hatchett, D.R. Kania, R.L. Kauffman, H.N. Komblum, O.L. Landen, S.M. Lane, R.A. Lerche, J.D. Lindl, K. Levendahl, D.S. Montgomery, J. Moody, T. Murphy, D.H. Munro, D.W. Phillion, B.A. Remington, D.B. Ress, L.J. Suter, G.L. Tietbohl, A.R. Thiessen, R.E. Turner, R.J. Wallace, J.D. Wiedwald, F. Ze
Fusion Science and Technology | Volume 21 | Number 3 | May 1992 | Pages 1340-1343
Magnetic and Inertial Fusion Experiment | doi.org/10.13182/FST92-A29909
Articles are hosted by Taylor and Francis Online.
The Inertial Confinement Fusion (ICF) Program and the Lawrence Livermore National Laboratory has made substantial progress in understanding the details of the radiation drive and the dynamics of capsules imploded by the Nova laser. A detailed understanding, validated by Nova experiments of the crucial physics for implosions is necessary before a new facility is started. A National Academy of Science Review Committee on ICF1 has recently endorsed a 12 point technical contract for the Nova program. Recent experiments have achieved a substantial number of these goals. A decrease in the level of plasma instabilities has been demonstrated by the use of phase plates. Neutron measurements have been used to demonstrate high densities in well understood implosions. A detailed understanding of the Rayleigh-Taylor instability at the ablation front of x-ray driven planar foil targets with large hydrodynamic growth factors has been proven. X-ray spectroscopy has been used to demonstrate a high fuel density and an improvement in the compression ratio of targets when a shaped pulse is used to keep a pusher on a low rho-r trajectory.