ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Glen R. Longhurst, Andy G. Heics, Walter T. Shmayda, Richard L. Rossmassler
Fusion Science and Technology | Volume 21 | Number 2 | March 1992 | Pages 1017-1023
Material; Storage and Processing | doi.org/10.13182/FST92-A29885
Articles are hosted by Taylor and Francis Online.
To help resolve unknowns regarding consequences of air-ingress accidents in uranium beds, a series of experiments was conducted at Ontario Hydro Research Division with the participation of Princeton Plasma Physics Laboratory and the Idaho National Engineering Laboratory. These experiments involved exposure of uranium beds of various sizes to air, oxygen in helium, argon and Nitrogen. Beds of 5-gram to 3-kg uranium capacity were tested. Starting temperatures ranged from 294 K to 824 K. Results of these experiments showed that in every test the reaction was restrained with modest temperature excursions. Either surface films or gas blanketing may be responsible for quenching the reaction with air. In these tests the reaction appears to be stopped by a diffusive barrier film of reaction products that grows on the surface of the uranium grains. The only tritium emissions appeared to be due to thermal oscillation-driven gas expansion. Our conclusion is that the hazard associated with an air-ingress accident involving a uranium bed is smaller than we thought initially. With proper bed design, the energy release will be modest and should not result in damage to the bed structure. Tritium release can be minimized or prevented by keeping the bed only partially loaded.