ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Paul W. Fisher
Fusion Science and Technology | Volume 21 | Number 2 | March 1992 | Pages 794-799
Material; Storage and Processing | doi.org/10.13182/FST92-A29845
Articles are hosted by Taylor and Francis Online.
The tritium proof-of-principle (TPOP) experiment was designed and built by Oak Ridge National Laboratory (ORNL) to demonstrate the formation and acceleration of the world's first tritium pellets for fueling of future fusion reactors. Many parameters measured during the course of the experiment have been used to evaluate the physical properties of solid tritium. Pellet size was measured as a function of equilibrium fill pressure. A model was developed to predict this information from values of thermal conductivity, vapor pressure, and density reported in the literature. Good agreement between theory and experiment was found for both deuterium and tritium pellets. Evaluation of breakaway pressure data for deuterium pellets indicates that the shear strength of deuterium is about equal to its ultimate tensile strength. Tritium shear strength appears to be about twice that of deuterium at temperatures around 8 K. The reduction in pellet diameter due to barrel erosion for deuterium was about twice that for tritium pellets at a given velocity. This was also indicative of the greater strength of tritium relative to deuterium.