ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Chris Wagner: The role of Eden Radioisotopes in the future of nuclear medicine
Chris Wagner has more than 40 years of experience in nuclear medicine, beginning as a clinical practitioner before moving into leadership roles at companies like Mallinckrodt (now Curium) and Nordion. His knowledge of both the clinical and the manufacturing sides of nuclear medicine laid the groundwork for helping to found Eden Radioisotopes, a start-up venture that intends to make diagnostic and therapeutic raw material medical isotopes like molybdenum-99 and lutetium-177.
Paul W. Fisher
Fusion Science and Technology | Volume 21 | Number 2 | March 1992 | Pages 794-799
Material; Storage and Processing | doi.org/10.13182/FST92-A29845
Articles are hosted by Taylor and Francis Online.
The tritium proof-of-principle (TPOP) experiment was designed and built by Oak Ridge National Laboratory (ORNL) to demonstrate the formation and acceleration of the world's first tritium pellets for fueling of future fusion reactors. Many parameters measured during the course of the experiment have been used to evaluate the physical properties of solid tritium. Pellet size was measured as a function of equilibrium fill pressure. A model was developed to predict this information from values of thermal conductivity, vapor pressure, and density reported in the literature. Good agreement between theory and experiment was found for both deuterium and tritium pellets. Evaluation of breakaway pressure data for deuterium pellets indicates that the shear strength of deuterium is about equal to its ultimate tensile strength. Tritium shear strength appears to be about twice that of deuterium at temperatures around 8 K. The reduction in pellet diameter due to barrel erosion for deuterium was about twice that for tritium pellets at a given velocity. This was also indicative of the greater strength of tritium relative to deuterium.