ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
A. Nobile, J. R. Wermer, R. T. Walters
Fusion Science and Technology | Volume 21 | Number 2 | March 1992 | Pages 769-774
Material Properties | doi.org/10.13182/FST92-A29841
Articles are hosted by Taylor and Francis Online.
Palladium and LaNi5-xAlx (x=0.30, 0.75, 0.85), which form reversible hydrides, are used for tritium processing and storage in the Savannah River Site (SRS) tritium facilities. As part of a program to develop technology based on the use of reversible metal hydrides for tritium processing and storage, the effects of aging on the thermodynamic behavior of palladium and LaNi4.25Al0.75 tritides are under investigation. During aging, the 3He tritium decay product remains in the tritide lattice and changes the thermodynamics of the tritium-metal tritide system. Aging effects in 755-day-aged palladium and 1423-day-aged LaNi4.25Al0.75 tritides will be reported. Changes in the thermodynamics were determined by measuring tritium desorption isotherms on aging samples. In palladium, aging decreases the desorption isotherm plateau pressure and changes the a-phase portion of the isotherm. Aging-induced changes in desorption isotherms are more drastic in LaNi4.25Al0.75. Among the changes noted are: (1) decreased isotherm plateau pressure, (2) increased isotherm plateau slope, and (3) appearance of deep-trapped tritium, removable only by exchange with protium or deuterium. Various processes occurring in the tritide lattice which might be responsible for the observed aging effects in palladium and LaNi4.25Al0.75 tritides will be discussed.