ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Michio Watanabe, Chiaki Takeda, Shizuo Tada, Hiroshi Anada, Susumu Ikeno, Kan Ashida, Kuniaki Watanabe
Fusion Science and Technology | Volume 21 | Number 2 | March 1992 | Pages 763-768
Material Properties | doi.org/10.13182/FST92-A29840
Articles are hosted by Taylor and Francis Online.
Alloying effects on absorption and desorption kinetics of deuterium for Zr-Al alloys were studied with mass analyzed thermal desorption spectroscopy using a conventional high vacuum system. It was found that the absorption rate of deuterium was proportional to the 1/2 power of deuterium gas pressure. On the other hand, the desorption process obeyed the second order kinetics with respect to the amount of absorbed deuterium. The temperature dependence of the rate constants revealed that the activation energies for both the absorption and desorption processes were lowered by the increase in the Al content in the alloys. Through potential diagrams for the absorption and desorption of deuterium, it was also found that the heat of deuterium (hydrogen) solution decreased with increasing Al composition. In addition, the x-ray diffraction spectroscopy showed the formation of a Zr4Al3 phase in the Zr3>Al2 sample owing to repeated absorption and desorption cycles. The results suggest that the electronic factors, for example, work function, electron density, d-band character and so on, play an important role for the alloying effects rather than crystallographic structures. In addition, it becomes evident that the absorption/desorption properties for such alloys are limited not only by the side reactions with impurity gases but also changes in their crystallographic nature owing to interactions with hydrogen and/or heat cycles.