ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
P.A. Davis, R.J. Cornett, R.W.D. Killey, M.J. Wood, W.J.G. Workman
Fusion Science and Technology | Volume 21 | Number 2 | March 1992 | Pages 651-658
Safety and Measurement (Monitoring) | doi.org/10.13182/FST92-A29821
Articles are hosted by Taylor and Francis Online.
An accidental release of HTO to the atmosphere from a reactor at the Chalk River Laboratories was assessed in a timely and efficient manner using a combination of predictive modelling and environmental sampling. A simple Gaussian plume model performed well in predicting the concentration of HTO in air. Doses to workers and to members of the public were well below acceptable levels at all times during the incident. The release was turned to advantage to study tritium behaviour in the winter environment. HTO concentrations were measured in air, falling snow, vegetation and the snowpack at many locations during and after the release. The rate of HTO deposition to snow is greatly enhanced when snow is falling. The rate of new snow accumulation exceeded the rate of HTO diffusion in snow, so that the snowpack retained essentially all of the tritium deposited to it until spring melt occurred. Snow core data were therefore used as a surrogate for air concentrations to study the dispersion of the airborne plume, which was strongly affected by the topography of the Ottawa River Valley.