ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
P.A. Davis, R.J. Cornett, R.W.D. Killey, M.J. Wood, W.J.G. Workman
Fusion Science and Technology | Volume 21 | Number 2 | March 1992 | Pages 651-658
Safety and Measurement (Monitoring) | doi.org/10.13182/FST92-A29821
Articles are hosted by Taylor and Francis Online.
An accidental release of HTO to the atmosphere from a reactor at the Chalk River Laboratories was assessed in a timely and efficient manner using a combination of predictive modelling and environmental sampling. A simple Gaussian plume model performed well in predicting the concentration of HTO in air. Doses to workers and to members of the public were well below acceptable levels at all times during the incident. The release was turned to advantage to study tritium behaviour in the winter environment. HTO concentrations were measured in air, falling snow, vegetation and the snowpack at many locations during and after the release. The rate of HTO deposition to snow is greatly enhanced when snow is falling. The rate of new snow accumulation exceeded the rate of HTO diffusion in snow, so that the snowpack retained essentially all of the tritium deposited to it until spring melt occurred. Snow core data were therefore used as a surrogate for air concentrations to study the dispersion of the airborne plume, which was strongly affected by the topography of the Ottawa River Valley.