ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Thomas J. Kissner, Ronald E. Wieneke
Fusion Science and Technology | Volume 21 | Number 2 | March 1992 | Pages 583-587
Safety; Measurement and Accountability; Operation and Maintenance; Application | doi.org/10.13182/FST92-A29810
Articles are hosted by Taylor and Francis Online.
The Tritium Emissions Reduction Facility (TERF) is an automated process that continuously removes tritium from process gases before they are discharged to the atmosphere. Key control parameters include: temperature, pressure, flow, oxygen content, total combustibles, moisture concentrations and tritium concentrations. The procurement of an industrial, microprocessor-based Distributed Process Control System was justified for TERF due to the critical nature and complexity of the system. A detailed performance specification was prepared and submitted to industrial companies who had demonstrated past success in the field of process control and instrumentation. The contract was awarded to the Foxboro Company, of Foxboro, Ma., who developed the new Intelligent Automation (I/A) Distributed Process Control System. A primary goal of the design team was that the control system increase TERF reliability and availability by automatically controlling system operation and by assisting the operator in the diagnosis of problems, preventative maintenance, alarming, report generation, and long term storage of data. The comprehensive continuous monitoring of the TERF process provided by the Foxboro I/A Distributed System is expected to: (1) optimize the system operating parameters and control the process better than was previously possible, (2) provide more alerts and alarms to aid operators in diagnosing and responding to problems, and (3) record and organize process data more effectively than before.