ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
2025: The year in nuclear
As Nuclear News has done since 2022, we have compiled a review of the nuclear news that filled headlines and sparked conversations in the year just completed. Departing from the chronological format of years past, we open with the most impactful news of 2025: a survey of actions and orders of the Trump administration that are reshaping nuclear research, development, deployment, and commercialization. We then highlight some of the top news in nuclear restarts, new reactor testing programs, the fuel supply chain and broader fuel cycle, and more.
W. Gulden, W. Raskob
Fusion Science and Technology | Volume 21 | Number 2 | March 1992 | Pages 536-543
Safety; Measurement and Accountability; Operation and Maintenance; Application | doi.org/10.13182/FST92-A29802
Articles are hosted by Taylor and Francis Online.
An early effective dose equivalent (EDE) to the most exposed individual of the public (MEI) at 1 km of 0.5 mSv per g tritium released in HTO form is presently used to quantify the environmental impact of accidental tritium releases from future fusion devices like NET (Next European Torus) or ITER (International Thermonuclear Experimental Reactor). To quantify the uncertainty margin of this value, the computer code UFOTRI, that accounts for the complex behaviour of tritium deposition on plants and soil, and the subsequent re-emission of HTO to the atmosphere, was used for parametric studies. Typical realistic “worst case releases” based on recorded meteorological weather sequences have been identified and analysed. Individual and collective doses due to inhalation, skin absorption and ingestion have been calculated.