ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
Recent surveys confirm high levels of U.S. nuclear support
Surveys have consistently indicated that public support in the United States for the use of nuclear energy has been increasing in recent years. Four recent surveys continue to suggest that near-record-high numbers of Americans support nuclear energy. However, the survey results differ—sometimes widely—in the details of their findings.
N. P. Kherani, W.T. Shmayda
Fusion Science and Technology | Volume 21 | Number 2 | March 1992 | Pages 334-339
Safety; Measurement and Accountability; Operation and Maintenance; Application | doi.org/10.13182/FST92-A29767
Articles are hosted by Taylor and Francis Online.
Certain metal tritides have been investigated as reliable and quasi-constant sources of electrons for a number of practical purposes with particular attention to the dependence of the electron emission rate as a function of temperature. The objective of this article is to carry out simple calculations that illustrate the relative ranking of a number of binary metal tritides with respect to the maximum achievable electron flux; examine semi-empirically the energy spectrum of the electrons emanating from the surface of a titanium tritide film; and present experimental measurements of the electron emission rate from the surface of titanium tritide films. The results suggest that beryllium tritide would yield the greatest electron emission rate of all the metal tritides; the emitted flux has a significant component of secondary electrons; and, the total electron emission rate is quite sensitive to the condition of the emitting surface.