ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
Recent surveys confirm high levels of U.S. nuclear support
Surveys have consistently indicated that public support in the United States for the use of nuclear energy has been increasing in recent years. Four recent surveys continue to suggest that near-record-high numbers of Americans support nuclear energy. However, the survey results differ—sometimes widely—in the details of their findings.
John T. Gill, Daniel B. Hawkins, Clifford L. Renschler
Fusion Science and Technology | Volume 21 | Number 2 | March 1992 | Pages 325-329
Safety; Measurement and Accountability; Operation and Maintenance; Application | doi.org/10.13182/FST92-A29765
Articles are hosted by Taylor and Francis Online.
Zeolite-based tritium lamps are a possible alternative to traditional tritium gas tube light sources. Rare earth luminescing centers may be ion-exchanged into zeolite matrices. Close proximity of tritium atoms to the rare earths can be provided by highly tritiated water sorbed within the pore structure of the zeolite aluminosilicate matrix. Zeolites are optically clear and radiation stable. Light outputs up to 2 W/cm2, with good stability, are shown here for tritiated water-loaded zeolites. Procedures for obtaining light sources are presented and results are discussed. The possible use of these luminescent materials as process monitors for the tritium content of zeolite absorption columns is also proposed.