ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
2025: The year in nuclear
As Nuclear News has done since 2022, we have compiled a review of the nuclear news that filled headlines and sparked conversations in the year just completed. Departing from the chronological format of years past, we open with the most impactful news of 2025: a survey of actions and orders of the Trump administration that are reshaping nuclear research, development, deployment, and commercialization. We then highlight some of the top news in nuclear restarts, new reactor testing programs, the fuel supply chain and broader fuel cycle, and more.
Mario Merola, Massimo Zucchetti
Fusion Science and Technology | Volume 21 | Number 2 | March 1992 | Pages 129-141
Technical Paper | First-Wall Technology | doi.org/10.13182/FST92-A29732
Articles are hosted by Taylor and Francis Online.
This work deals with the design of a fusion reactor first-wall material, taking into account both low-activation and thermal-mechanical properties. The concept of “low activation” is discussed in detail, and a new definition is proposed that takes into account not only waste-related problems, but also maintenance and accident scenarios. The results of a thermal-mechanical analysis of some proposed materials, performed in a demonstration reactor under operating conditions, are presented. Among the austenitic stainless steels, VA64 has proved to be the most effective material as far as thermal stress is concerned. The maximum von Mises tensile stress is below the elastic limit. The radioactivity induced in VA64 alloy is analyzed. The long-term activity does not satisfy the stated limits. Therefore, the technique of elemental substitution in steels is tackled. A low-activation version of VA64 (named VA64LA) is proposed that is formed by removing the niobium content and replacing it with titanium. This new alloy has been analyzed with regard to each characteristic required for a first-wall material, and it has proved to be a promising austenitic steel for fusion reactor application.